

Unit C1, C1.4.1 and C1.4.2

Crude oil and hydrocarbons

1. The flow chart shows stages in the fractional distillation of crude oil.

Match statements, **A**, **B**, **C** and **D**, with the numbers 1 – 4 in the flow chart.

- A Hydrocarbons in the crude oil turn to vapour
- B Hydrocarbons collected as gases
- C Hydrocarbons with high boiling points
- **D** Hydrocarbons condense to form liquids

Progress check

Unit C1, C1.4.1 and C1.4.2

2. Crude oil vapour can be separated into a number of fractions.

(a) Crude oil vapour enters the fractionating column.

What happens as the vapour cools?

- 1 The fractions separate because they have different densities.
- 2 The fractions condense at 40 °C.
- 3 The fractions condense at different temperatures.
- 4 The fractions condense at 350 °C.
- (b) Fraction 6 will contain . . .
 - 1 alkanes with high boiling points.
 - 2 alkanes with a small number of carbon atoms in each molecule.
 - 3 only hydrocarbons that are unsaturated.
 - 4 only hydrocarbons with low boiling points.
- **Fraction 1** contains the alkanes called methane, ethane, propane and butane. (c)

By what process could pure methane be obtained from this fraction?

- 1 evaporation
- 2 electrolysis
- 3 thermal decomposition
- 4 fractional distillation

Unit C1, C1.4.1 and C1.4.2

- (d) Which of these statements is correct for the alkanes?
 - 1 They are a series of compounds with the general formula C_nH_{2n+1}
 - **2** They are saturated compounds.
 - 3 Most are gases at room temperature (20 °C), some are liquids, none are solids.
 - 4 Their molecules have a carbon: hydrogen ratio of 1:4
- 3. This question is about four alkanes, A, B, C and D.

Alkane	Formula	Boiling point in °C
Α	C ₂ H ₆	-89
В	C ₃ H ₈	-42
С	C ₄ H ₁₀	0
D	C ₅ H ₁₂	+36

Match alkanes, A, B, C and D, with the numbers 1 – 4 in the sentences.

The alkane with the highest boiling point is . . . 2

The alkane that boils at the same temperature as ice melts is . . . 3

The alkane that is a gas at -50 °C is . . . 4

Unit C1, C1.4.1 and C1.4.2

- **4.** Crude oil contains a large number of alkanes, which have the general formula C_nH_{2n+2} Crude oil can be separated into a number of fractions by fractional distillation.
 - (a) Crude oil can be separated into fractions in this way because . . .
 - 1 the alkanes it contains have different boiling points.
 - the alkanes it contains have different densities.
 - 3 alkanes are compounds which are made up of more than one element.
 - 4 all alkanes vaporise easily when they are heated.
 - (b) Each fraction from the crude oil will contain . . .
 - 1 a single alkane.
 - 2 a mixture of several alkanes.
 - **3** alkanes that have the same boiling point.
 - 4 alkanes that have the same density.

The alkanes are a series of compounds.

The first ten alkanes in the series range from methane, CH₄ to decane, C₁₀H₂₂

- (c) The difference between the formulae of successive alkanes is . . .
 - 1 C
 - **2** H₂
 - **3** CH
 - **4** CH₂
- (d) Which of the following changes in the alkane series, from methane to decane?
 - 1 the general formula
 - 2 the number of bonds on each carbon atom
 - 3 the ratio of carbon atoms to hydrogen atoms
 - 4 the number of elements present

